

 Membrane HTTP Adaptive Stream plugin

 v0.20.2

 Table of contents

 	Membrane HTTP Adaptive Streaming Plugin

 	LICENSE

 	
 Modules

 	Membrane.HTTPAdaptiveStream.Source

 	Elements

 	Membrane.HTTPAdaptiveStream.Sink

 	Membrane.HTTPAdaptiveStream.Sink.ManifestConfig

 	Membrane.HTTPAdaptiveStream.Sink.TrackConfig

 	Membrane.HTTPAdaptiveStream.SinkBin

 	HLS

 	Membrane.HTTPAdaptiveStream.HLS

 	Membrane.HTTPAdaptiveStream.HLS.SegmentAttribute

 	Manifest

 	Membrane.HTTPAdaptiveStream.Manifest

 	Membrane.HTTPAdaptiveStream.Manifest.Changeset

 	Membrane.HTTPAdaptiveStream.Manifest.Changeset.Segment

 	Membrane.HTTPAdaptiveStream.Manifest.Segment

 	Membrane.HTTPAdaptiveStream.Manifest.SegmentAttribute

 	Membrane.HTTPAdaptiveStream.Manifest.Track

 	Membrane.HTTPAdaptiveStream.Manifest.Track.Config

 	Storages

 	Membrane.HTTPAdaptiveStream.Storage

 	Membrane.HTTPAdaptiveStream.Storages.FileStorage

 	Membrane.HTTPAdaptiveStream.Storages.GenServerStorage

 	Membrane.HTTPAdaptiveStream.Storages.SendStorage

 Membrane HTTP Adaptive Streaming Plugin

[image: Hex.pm]
[image: API Docs]
[image: CircleCI]
Plugin generating manifests for HTTP adaptive streaming protocols.
Currently, only HTTP Live Streaming (HLS) is supported.
In future, the support for MPEG-DASH is planned as well
Installation
Add the following line to your deps in mix.exs. Run mix deps.get.
	{:membrane_http_adaptive_stream_plugin, "~> 0.20.2"}
Usage Example
See test/membrane_http_adaptive_stream/integration_test/sink_bin_integration_test.exs pipeline for details on how to use HLS plugin and generate HLS playlists for example media tracks.
Master and media playlists with related multimedia content that were generated via this pipeline are stored in test/membrane_http_adaptive_stream/integration_test/fixtures directory.
Copyright and License
Copyright 2019,

 LICENSE - Membrane HTTP Adaptive Stream plugin v0.20.2

 LICENSE

 Apache License
 Version 2.0, January 2004
 http://www.apache.org/licenses/

 TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

 1. Definitions.

 "License" shall mean the terms and conditions for use, reproduction,
 and distribution as defined by Sections 1 through 9 of this document.

 "Licensor" shall mean the copyright owner or entity authorized by
 the copyright owner that is granting the License.

 "Legal Entity" shall mean the union of the acting entity and all
 other entities that control, are controlled by, or are under common
 control with that entity. For the purposes of this definition,
 "control" means (i) the power, direct or indirect, to cause the
 direction or management of such entity, whether by contract or
 otherwise, or (ii) ownership of fifty percent (50%) or more of the
 outstanding shares, or (iii) beneficial ownership of such entity.

 "You" (or "Your") shall mean an individual or Legal Entity
 exercising permissions granted by this License.

 "Source" form shall mean the preferred form for making modifications,
 including but not limited to software source code, documentation
 source, and configuration files.

 "Object" form shall mean any form resulting from mechanical
 transformation or translation of a Source form, including but
 not limited to compiled object code, generated documentation,
 and conversions to other media types.

 "Work" shall mean the work of authorship, whether in Source or
 Object form, made available under the License, as indicated by a
 copyright notice that is included in or attached to the work
 (an example is provided in the Appendix below).

 "Derivative Works" shall mean any work, whether in Source or Object
 form, that is based on (or derived from) the Work and for which the
 editorial revisions, annotations, elaborations, or other modifications
 represent, as a whole, an original work of authorship. For the purposes
 of this License, Derivative Works shall not include works that remain
 separable from, or merely link (or bind by name) to the interfaces of,
 the Work and Derivative Works thereof.

 "Contribution" shall mean any work of authorship, including
 the original version of the Work and any modifications or additions
 to that Work or Derivative Works thereof, that is intentionally
 submitted to Licensor for inclusion in the Work by the copyright owner
 or by an individual or Legal Entity authorized to submit on behalf of
 the copyright owner. For the purposes of this definition, "submitted"
 means any form of electronic, verbal, or written communication sent
 to the Licensor or its representatives, including but not limited to
 communication on electronic mailing lists, source code control systems,
 and issue tracking systems that are managed by, or on behalf of, the
 Licensor for the purpose of discussing and improving the Work, but
 excluding communication that is conspicuously marked or otherwise
 designated in writing by the copyright owner as "Not a Contribution."

 "Contributor" shall mean Licensor and any individual or Legal Entity
 on behalf of whom a Contribution has been received by Licensor and
 subsequently incorporated within the Work.

 2. Grant of Copyright License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 copyright license to reproduce, prepare Derivative Works of,
 publicly display, publicly perform, sublicense, and distribute the
 Work and such Derivative Works in Source or Object form.

 3. Grant of Patent License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 (except as stated in this section) patent license to make, have made,
 use, offer to sell, sell, import, and otherwise transfer the Work,
 where such license applies only to those patent claims licensable
 by such Contributor that are necessarily infringed by their
 Contribution(s) alone or by combination of their Contribution(s)
 with the Work to which such Contribution(s) was submitted. If You
 institute patent litigation against any entity (including a
 cross-claim or counterclaim in a lawsuit) alleging that the Work
 or a Contribution incorporated within the Work constitutes direct
 or contributory patent infringement, then any patent licenses
 granted to You under this License for that Work shall terminate
 as of the date such litigation is filed.

 4. Redistribution. You may reproduce and distribute copies of the
 Work or Derivative Works thereof in any medium, with or without
 modifications, and in Source or Object form, provided that You
 meet the following conditions:

 (a) You must give any other recipients of the Work or
 Derivative Works a copy of this License; and

 (b) You must cause any modified files to carry prominent notices
 stating that You changed the files; and

 (c) You must retain, in the Source form of any Derivative Works
 that You distribute, all copyright, patent, trademark, and
 attribution notices from the Source form of the Work,
 excluding those notices that do not pertain to any part of
 the Derivative Works; and

 (d) If the Work includes a "NOTICE" text file as part of its
 distribution, then any Derivative Works that You distribute must
 include a readable copy of the attribution notices contained
 within such NOTICE file, excluding those notices that do not
 pertain to any part of the Derivative Works, in at least one
 of the following places: within a NOTICE text file distributed
 as part of the Derivative Works; within the Source form or
 documentation, if provided along with the Derivative Works; or,
 within a display generated by the Derivative Works, if and
 wherever such third-party notices normally appear. The contents
 of the NOTICE file are for informational purposes only and
 do not modify the License. You may add Your own attribution
 notices within Derivative Works that You distribute, alongside
 or as an addendum to the NOTICE text from the Work, provided
 that such additional attribution notices cannot be construed
 as modifying the License.

 You may add Your own copyright statement to Your modifications and
 may provide additional or different license terms and conditions
 for use, reproduction, or distribution of Your modifications, or
 for any such Derivative Works as a whole, provided Your use,
 reproduction, and distribution of the Work otherwise complies with
 the conditions stated in this License.

 5. Submission of Contributions. Unless You explicitly state otherwise,
 any Contribution intentionally submitted for inclusion in the Work
 by You to the Licensor shall be under the terms and conditions of
 this License, without any additional terms or conditions.
 Notwithstanding the above, nothing herein shall supersede or modify
 the terms of any separate license agreement you may have executed
 with Licensor regarding such Contributions.

 6. Trademarks. This License does not grant permission to use the trade
 names, trademarks, service marks, or product names of the Licensor,
 except as required for reasonable and customary use in describing the
 origin of the Work and reproducing the content of the NOTICE file.

 7. Disclaimer of Warranty. Unless required by applicable law or
 agreed to in writing, Licensor provides the Work (and each
 Contributor provides its Contributions) on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
 implied, including, without limitation, any warranties or conditions
 of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
 PARTICULAR PURPOSE. You are solely responsible for determining the
 appropriateness of using or redistributing the Work and assume any
 risks associated with Your exercise of permissions under this License.

 8. Limitation of Liability. In no event and under no legal theory,
 whether in tort (including negligence), contract, or otherwise,
 unless required by applicable law (such as deliberate and grossly
 negligent acts) or agreed to in writing, shall any Contributor be
 liable to You for damages, including any direct, indirect, special,
 incidental, or consequential damages of any character arising as a
 result of this License or out of the use or inability to use the
 Work (including but not limited to damages for loss of goodwill,
 work stoppage, computer failure or malfunction, or any and all
 other commercial damages or losses), even if such Contributor
 has been advised of the possibility of such damages.

 9. Accepting Warranty or Additional Liability. While redistributing
 the Work or Derivative Works thereof, You may choose to offer,
 and charge a fee for, acceptance of support, warranty, indemnity,
 or other liability obligations and/or rights consistent with this
 License. However, in accepting such obligations, You may act only
 on Your own behalf and on Your sole responsibility, not on behalf
 of any other Contributor, and only if You agree to indemnify,
 defend, and hold each Contributor harmless for any liability
 incurred by, or claims asserted against, such Contributor by reason
 of your accepting any such warranty or additional liability.

 END OF TERMS AND CONDITIONS

 APPENDIX: How to apply the Apache License to your work.

 To apply the Apache License to your work, attach the following
 boilerplate notice, with the fields enclosed by brackets "[]"
 replaced with your own identifying information. (Don't include
 the brackets!) The text should be enclosed in the appropriate
 comment syntax for the file format. We also recommend that a
 file or class name and description of purpose be included on the
 same "printed page" as the copyright notice for easier
 identification within third-party archives.

 Copyright 2018 Software Mansion

 Licensed under the Apache License, Version 2.0 (the "License");
 you may not use this file except in compliance with the License.
 You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

 Unless required by applicable law or agreed to in writing, software
 distributed under the License is distributed on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 See the License for the specific language governing permissions and
 limitations under the License.

 Membrane.HTTPAdaptiveStream.Source - Membrane HTTP Adaptive Stream plugin v0.20.2

Membrane.HTTPAdaptiveStream.Source

A Membrane Source element that fetches and demuxes HLS streams.
It uses the ExHLS library to handle the HLS protocol.
It is recommended to plug Membrane.H264.Parser and Membrane.AAC.Parser
after this element to parse the video and audio streams respectively,
because the stream formats returned by this element can differ depending
on the type of the HLS stream (MPEG-TS or fMP4).
Element options
Passed via struct Membrane.HTTPAdaptiveStream.Source.t/0
	url
String.t()
Required
URL of the HLS playlist manifest

	buffered_stream_time
Membrane.Time.t()
Default value: 5 |> Membrane.Time.seconds()
Amount of time of stream, that will be buffered by Membrane.HTTPAdaptiveStream.Source.
Defaults to 5 seconds.
Due to implementation details, the amount of the buffered stream might
be slightly different than specified value.

	variant_selection_policy
variant_selection_policy()
Default value: :highest_resolution
The policy used to select a variant from the list of available variants.
The policy can be one of the predefined ones or a custom function that takes a map of
variant IDs to their descriptions and returns the ID of the selected variant.
The predefined policies are:
	:lowest_resolution - selects the variant with the lowest value of video width * height.
	:highest_resolution - selects the variant with the highest value of video width * height.
	:lowest_bandwidth - selects the variant with the lowest bandwidth.
	:highest_bandwidth - selects the variant with the highest bandwidth.

Defaults to :highest_resolution.

	how_much_to_skip
Membrane.Time.t()
Default value: 0 |> Membrane.Time.days()
Specifies how much time should be discarded from each of the tracks.
Please note that an actual discarded part of the stream might be at most of that length
because it needs to be aligned with HLS segments distribution.
The source will send an Membrane.Event.Discontinuity event with :duration field
representing duration of the discarded part of the stream.

Pads
:audio_output
Accepted formats:
AAC
%RemoteStream{content_format: AAC}
	Direction:	:output
	Availability:	:on_request
	Flow control:	:manual
	Demand unit:	:buffers

:video_output
Accepted formats:
H264
%RemoteStream{content_format: H264}
	Direction:	:output
	Availability:	:on_request
	Flow control:	:manual
	Demand unit:	:buffers

 Summary

 Types

 new_tracks_notification()

 Notification sent by Membrane.HTTPAdaptiveStream.Source to its parent when the element figures out what
tracks are present in the HLS stream.

 t()

 Struct containing options for Membrane.HTTPAdaptiveStream.Source

 variant_selection_policy()

 The policy used to select a variant from the list of available variants.

 Functions

 options()

 Returns description of options available for this module

 Types

 new_tracks_notification()

 @type new_tracks_notification() ::
 {:new_tracks,
 audio_output: Membrane.RemoteStream.t() | Membrane.AAC.t(),
 video_output: Membrane.RemoteStream.t() | Membrane.H264.t()}

Notification sent by Membrane.HTTPAdaptiveStream.Source to its parent when the element figures out what
tracks are present in the HLS stream.
Contains pads that should be linked to the element and stream formats that will be sent via
those pads.
If pads are linked before the element enters the :playing playback, the notification will
not be sent, but the pads will have to match the tracks in the HLS stream.

 t()

 @type t() :: %Membrane.HTTPAdaptiveStream.Source{
 buffered_stream_time: Membrane.Time.t(),
 how_much_to_skip: Membrane.Time.t(),
 url: String.t(),
 variant_selection_policy: variant_selection_policy()
}

Struct containing options for Membrane.HTTPAdaptiveStream.Source

 variant_selection_policy()

 @type variant_selection_policy() ::
 :lowest_resolution
 | :highest_resolution
 | :lowest_bandwidth
 | :highest_bandwidth
 | (variants_map :: %{
 required(integer()) => ExHLS.Client.variant_description()
 } ->
 variant_id :: integer())

The policy used to select a variant from the list of available variants.
The policy can be one of the predefined ones or a custom function that takes a map of
variant IDs to their descriptions and returns the ID of the selected variant.
The predefined policies are:
	:lowest_resolution - selects the variant with the lowest value of video width * height.
	:highest_resolution - selects the variant with the highest value of video width * height.
	:lowest_bandwidth - selects the variant with the lowest bandwidth.
	:highest_bandwidth - selects the variant with the highest bandwidth.

 Functions

 options()

 @spec options() :: keyword()

Returns description of options available for this module

 Membrane.HTTPAdaptiveStream.Sink - Membrane HTTP Adaptive Stream plugin v0.20.2

Membrane.HTTPAdaptiveStream.Sink

Sink for generating HTTP streaming manifests.
Uses Membrane.HTTPAdaptiveStream.Manifest for manifest serialization
and Membrane.HTTPAdaptiveStream.Storage for saving files.
Notifications
	{:track_playable, input_pad_id} - sent when the first segment of a track is
stored, and thus the track is ready to be played

Examples
The following configuration:
%Membrane.HTTPAdaptiveStream.Sink{
 manifest_config: %ManifestConfig{name: "manifest", module: Membrane.HTTPAdaptiveStream.HLS}
 storage: %Membrane.HTTPAdaptiveStream.Storages.FileStorage{directory: "output"}
}
will generate a HLS manifest in the output directory, playable from
output/manifest.m3u8 file.
Element options
Passed via struct Membrane.HTTPAdaptiveStream.Sink.t/0
	manifest_config
ManifestConfig.t()
Required

	track_config
TrackConfig.t()
Required

	storage
Storage.config_t()
Required
Storage configuration. May be one of Membrane.HTTPAdaptiveStream.Storages.*.
See Membrane.HTTPAdaptiveStream.Storage behaviour.

	cleanup_after
nil | Membrane.Time.t()
Default value: nil
If not nil, time after a storage cleanup function should run.
The function will remove all manifests and segments stored during the stream.

Pads
:input
Accepted formats:
CMAF.Track
	Direction:	:input
	Availability:	:on_request
	Flow control:	:manual
	Demand unit:	:buffers

Pad options:
	track_name
String.t() | nil
Default value: nil
Name that will be used to name the media playlist for the given track, as well as its header and segments files.
It must not contain any URI reserved characters.

	segment_duration
Membrane.Time.t()
Required
The minimal duration of media segments produced by this particular track.
In case of regular paced streams the parameter may not have any impact, but when
partial segments gets used it may decide when regular segments gets finalized and new gets started.

	partial_segment_duration
Membrane.Time.t() | nil
Default value: nil
The target duration of partial segments.
When set to nil then the track is not supposed to emit partial segments.

	max_framerate
float() | nil
Default value: nil
The maximal framerate of video variant. This information is used in master playlist.
When set to nil then this information won't be added to master playlist. For audio it should be set to nil.

 Summary

 Types

 input_pad_opts()

 Options for pad :input

 t()

 Struct containing options for Membrane.HTTPAdaptiveStream.Sink

 Functions

 options()

 Returns description of options available for this module

 Types

 input_pad_opts()

 @type input_pad_opts() :: [
 track_name: String.t() | nil,
 segment_duration: Membrane.Time.t(),
 partial_segment_duration: Membrane.Time.t() | nil,
 max_framerate: float() | nil
]

Options for pad :input

 t()

 @type t() :: %Membrane.HTTPAdaptiveStream.Sink{
 cleanup_after: nil | Membrane.Time.t(),
 manifest_config: Membrane.HTTPAdaptiveStream.Sink.ManifestConfig.t(),
 storage: Membrane.HTTPAdaptiveStream.Storage.config_t(),
 track_config: Membrane.HTTPAdaptiveStream.Sink.TrackConfig.t()
}

Struct containing options for Membrane.HTTPAdaptiveStream.Sink

 Functions

 options()

 @spec options() :: keyword()

Returns description of options available for this module

 Membrane.HTTPAdaptiveStream.Sink.ManifestConfig - Membrane HTTP Adaptive Stream plugin v0.20.2

Membrane.HTTPAdaptiveStream.Sink.ManifestConfig

Membrane.HTTPAdaptiveStream.Manifest configuration.

 Summary

 Types

 t()

 Manifest configuration consists of the following fields

 Types

 t()

 @type t() :: %Membrane.HTTPAdaptiveStream.Sink.ManifestConfig{
 module: module(),
 name: String.t()
}

Manifest configuration consists of the following fields:
	name - name of the main manifest file.
	module - implementation of the Membrane.HTTPAdaptiveStream.Manifest behaviour.

 Membrane.HTTPAdaptiveStream.Sink.TrackConfig - Membrane HTTP Adaptive Stream plugin v0.20.2

Membrane.HTTPAdaptiveStream.Sink.TrackConfig

Track configuration. For more information checkout Membrane.HTTPAdaptiveStream.Manifest.Track.Config

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Membrane.HTTPAdaptiveStream.Sink.TrackConfig{
 header_naming_fun: (Membrane.HTTPAdaptiveStream.Manifest.Track.t(),
 counter :: non_neg_integer() ->
 String.t()),
 mode: :live | :vod,
 partial_naming_fun: (String.t(), Keyword.t() -> String.t()),
 persist?: boolean(),
 segment_naming_fun: (Membrane.HTTPAdaptiveStream.Manifest.Track.t() ->
 String.t()),
 target_window_duration: Membrane.Time.t() | :infinity
}

 Membrane.HTTPAdaptiveStream.SinkBin - Membrane HTTP Adaptive Stream plugin v0.20.2

Membrane.HTTPAdaptiveStream.SinkBin

Bin responsible for receiving audio and video streams, performing payloading and CMAF muxing
to eventually store them using provided storage configuration.
Input streams
Parsed H264, H265 or AAC video or audio streams are expected to be connected via the :input pad.
The type of stream has to be specified via the pad's :encoding option.
Output
Specify one of Membrane.HTTPAdaptiveStream.Storages as :storage to configure the sink.
Bin options
Passed via struct Membrane.HTTPAdaptiveStream.SinkBin.t/0
	manifest_name
String.t()
Default value: "index"
Name of the main manifest file

	manifest_module
module
Required
Implementation of the Membrane.HTTPAdaptiveStream.Manifest
behaviour.

	storage
Storage.config_t()
Required
Storage configuration. May be one of Membrane.HTTPAdaptiveStream.Storages.*.
See Membrane.HTTPAdaptiveStream.Storage behaviour.

	target_window_duration
Time.t() | :infinity
Default value: 40 |> Membrane.Time.seconds()
Manifest duration is kept above that time, while the oldest segments
are removed whenever possible.

	persist?
boolean
Default value: false
If true, stale segments are removed from the manifest only. Once
playback finishes, they are put back into the manifest.

	mode
:live | :vod
Default value: :vod
Tells if the session is live or a VOD type of broadcast. It can influence type of metadata
inserted into the playlist's manifest.

	hls_mode
:muxed_av | :separate_av
Default value: :separate_av
Option defining how the incoming tracks will be handled and how CMAF will be muxed.
	In :muxed_av audio will be added to each video rendition, creating CMAF segments that contain both audio and video.
	In :separate_av audio and video tracks will be separate and synchronization will need to be sorted out by the player.

	header_naming_fun
(Manifest.Track.t(), counter :: non_neg_integer() -> String.t())
Default value: &Membrane.HTTPAdaptiveStream.Manifest.Track.default_header_naming_fun/2
A function that generates consequent media header names for a given track

	segment_naming_fun
(Manifest.Track.t() -> String.t())
Default value: &Membrane.HTTPAdaptiveStream.Manifest.Track.default_segment_naming_fun/1
A function that generates consequent segment names for a given track

	mp4_parameters_in_band?
boolean()
Default value: false
Determines whether the parameter type nalus will be removed from the stream.
Inband parameters seem to be legal with MP4, but some players don't respond kindly to them, so use at your own risk.
This parameter should be set to true when discontinuity can occur. For example when resolution can change.

	cleanup_after
nil | Time.t()
Default value: nil
Time after which a fire-and-forget storage cleanup function should run.
The function will remove all manifests and segments stored during the stream.

Pads
:input
Accepted formats:
Membrane.AAC
Membrane.H264
Membrane.H265
	Direction:	:input
	Availability:	:on_request

Pad options:
	encoding
:AAC | :H264 | :H265
Required
Encoding type determining which parser will be used for the given stream.

	track_name
String.t() | nil
Default value: nil
Name that will be used to name the media playlist for the given track, as well as its header and segments files.
It must not contain any URI reserved characters

	segment_duration
Membrane.Time.t()
Required
The minimal segment duration of the regular segments.

	partial_segment_duration
Membrane.Time.t() | nil
Default value: nil
The segment duration of the partial segments.
If not set then the bin won't produce any partial segments.

	max_framerate
float() | nil
Default value: nil
The maximal framerate of video variant. This information is used in master playlist.
When set to nil then this information won't be added to master playlist. For audio it should be set to nil.

 Summary

 Types

 input_pad_opts()

 Options for pad :input

 t()

 Struct containing options for Membrane.HTTPAdaptiveStream.SinkBin

 Functions

 options()

 Returns description of options available for this module

 Types

 input_pad_opts()

 @type input_pad_opts() :: [
 encoding: :AAC | :H264 | :H265,
 track_name: String.t() | nil,
 segment_duration: Membrane.Time.t(),
 partial_segment_duration: Membrane.Time.t() | nil,
 max_framerate: float() | nil
]

Options for pad :input

 t()

 @type t() :: %Membrane.HTTPAdaptiveStream.SinkBin{
 cleanup_after: nil | Membrane.Time.t(),
 header_naming_fun: (Membrane.HTTPAdaptiveStream.Manifest.Track.t(),
 counter :: non_neg_integer() ->
 String.t()),
 hls_mode: :muxed_av | :separate_av,
 manifest_module: module(),
 manifest_name: String.t(),
 mode: :live | :vod,
 mp4_parameters_in_band?: boolean(),
 persist?: boolean(),
 segment_naming_fun: (Membrane.HTTPAdaptiveStream.Manifest.Track.t() ->
 String.t()),
 storage: Membrane.HTTPAdaptiveStream.Storage.config_t(),
 target_window_duration: Membrane.Time.t() | :infinity
}

Struct containing options for Membrane.HTTPAdaptiveStream.SinkBin

 Functions

 options()

 @spec options() :: keyword()

Returns description of options available for this module

 Membrane.HTTPAdaptiveStream.HLS - Membrane HTTP Adaptive Stream plugin v0.20.2

Membrane.HTTPAdaptiveStream.HLS

Membrane.HTTPAdaptiveStream.Manifest implementation for HTTP Live Streaming.
Currently supports up to one audio and video stream.

 Summary

 Functions

 serialize(manifest)

 Generates EXTM3U playlist for the given manifest

 Functions

 serialize(manifest)

Generates EXTM3U playlist for the given manifest

 Membrane.HTTPAdaptiveStream.HLS.SegmentAttribute - Membrane HTTP Adaptive Stream plugin v0.20.2

Membrane.HTTPAdaptiveStream.HLS.SegmentAttribute

Implementation of Membrane.HTTPAdaptiveStream.Manifest.SegmentAttribute behaviour for HTTP Live Streaming

 Membrane.HTTPAdaptiveStream.Manifest - Membrane HTTP Adaptive Stream plugin v0.20.2

Membrane.HTTPAdaptiveStream.Manifest behaviour

Behaviour for manifest serialization.

 Summary

 Types

 serialized_manifest_t()

 serialized_manifests_t()

 t()

 Callbacks

 serialize(t)

 Functions

 add_chunk(manifest, track_id, buffer)

 Adds segment to the manifest. In case of ll-hls it will add partial segment, and also full segment if needed.
Returns Membrane.HTTPAdaptiveStream.Manifest.Track.Changeset.

 add_track(manifest, config)

 Add a track to the manifest.

 discontinue_track(manifest, track_id)

 Append a discontinuity to the track.

 finish(manifest, track_id)

 from_beginning(manifest)

 Filter all tracks that have option :persisted? set to true, then
restores all the stale segments in those tracks.

 has_track?(manifest, track_id)

 header_per_track(manifest)

 Returns one header per track

 persisted?(manifest, track_id)

 segments_per_track(manifest)

 Returns all segments grouped by the track id.

 serialize(manifest)

 Types

 serialized_manifest_t()

 @type serialized_manifest_t() ::
 {manifest_name :: String.t(), manifest_content :: String.t()}

 serialized_manifests_t()

 @type serialized_manifests_t() :: %{
 master_manifest: serialized_manifest_t(),
 manifest_per_track: %{optional(track_id :: any()) => serialized_manifest_t()}
}

 t()

 @type t() :: %Membrane.HTTPAdaptiveStream.Manifest{
 module: module(),
 name: String.t(),
 tracks: %{
 required(id :: any()) => Membrane.HTTPAdaptiveStream.Manifest.Track.t()
 }
}

 Callbacks

 serialize(t)

 @callback serialize(t()) :: serialized_manifests_t()

 Functions

 add_chunk(manifest, track_id, buffer)

 @spec add_chunk(
 t(),
 track_id :: Membrane.HTTPAdaptiveStream.Manifest.Track.id_t(),
 Membrane.Buffer.t()
) :: {Membrane.HTTPAdaptiveStream.Manifest.Changeset.t(), t()}

Adds segment to the manifest. In case of ll-hls it will add partial segment, and also full segment if needed.
Returns Membrane.HTTPAdaptiveStream.Manifest.Track.Changeset.

 add_track(manifest, config)

 @spec add_track(t(), Membrane.HTTPAdaptiveStream.Manifest.Track.Config.t()) ::
 {header_name :: String.t(), t()}

Add a track to the manifest.
Returns the name under which the header file should be stored.

 discontinue_track(manifest, track_id)

 @spec discontinue_track(t(), Membrane.HTTPAdaptiveStream.Manifest.Track.id_t()) ::
 {header_name :: String.t(), t()}

Append a discontinuity to the track.
This will inform the player that eg. the parameters of the encoder changed and allow you to provide a new MP4 header.
For details on discontinuities refer to RFC 8216.

 finish(manifest, track_id)

 @spec finish(t(), Membrane.HTTPAdaptiveStream.Manifest.Track.id_t()) ::
 {Membrane.HTTPAdaptiveStream.Manifest.Changeset.t(), t()}

 from_beginning(manifest)

 @spec from_beginning(t()) :: t()

Filter all tracks that have option :persisted? set to true, then
restores all the stale segments in those tracks.

 has_track?(manifest, track_id)

 @spec has_track?(t(), Membrane.HTTPAdaptiveStream.Manifest.Track.id_t()) :: boolean()

 header_per_track(manifest)

 @spec header_per_track(t()) :: %{optional(track_id :: term()) => String.t()}

Returns one header per track

 persisted?(manifest, track_id)

 @spec persisted?(t(), Membrane.HTTPAdaptiveStream.Manifest.Track.id_t()) :: boolean()

 segments_per_track(manifest)

 @spec segments_per_track(t()) :: %{
 optional(track_id :: term()) => [segment_name :: String.t()]
}

Returns all segments grouped by the track id.

 serialize(manifest)

 @spec serialize(t()) :: serialized_manifests_t()

 Membrane.HTTPAdaptiveStream.Manifest.Changeset - Membrane HTTP Adaptive Stream plugin v0.20.2

Membrane.HTTPAdaptiveStream.Manifest.Changeset

Structure representing changes that has been applied to the track. What element has been added
and what elements are to be removed.

 Summary

 Types

 element_type_t()

 t()

 Functions

 merge(changeset1, changeset2)

 Types

 element_type_t()

 @type element_type_t() :: :segment | :header

 t()

 @type t() :: %Membrane.HTTPAdaptiveStream.Manifest.Changeset{
 to_add: [Membrane.HTTPAdaptiveStream.Manifest.Changeset.Segment.t()],
 to_remove: [{element_type_t(), name :: String.t()}]
}

 Functions

 merge(changeset1, changeset2)

 @spec merge(t(), t()) :: t()

 Membrane.HTTPAdaptiveStream.Manifest.Changeset.Segment - Membrane HTTP Adaptive Stream plugin v0.20.2

Membrane.HTTPAdaptiveStream.Manifest.Changeset.Segment

Type used to recognize to_add segments in Changeset.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Membrane.HTTPAdaptiveStream.Manifest.Changeset.Segment{
 byte_offset: non_neg_integer() | nil,
 duration: Membrane.Time.t() | Ratio.t(),
 independent?: boolean(),
 name: String.t(),
 partial_name: String.t() | nil,
 payload: binary(),
 sequence_number: non_neg_integer(),
 type: :segment | :partial_segment
}

 Membrane.HTTPAdaptiveStream.Manifest.Segment - Membrane HTTP Adaptive Stream plugin v0.20.2

Membrane.HTTPAdaptiveStream.Manifest.Segment

Structure representing a single manifest segment.
It stores the following fields:
	name - the segment's name
	duration - the segment's total duration
	size - the byte size of the segment payload
	attributes - the meta attributes associated with the segment
	type - decides if the structure is a full segment that can exist on its own or if it hosts and awaits more partial segments

	parts - the partial segments making up the full segment

 Summary

 Types

 partial_segment_t()

 Structure of partial segment.

 segment_duration_t()

 t()

 type_t()

 Determines if segment is full and independent or partial
and consists of several partial segments.

 Types

 partial_segment_t()

 @type partial_segment_t() :: %{
 name: String.t(),
 independent?: boolean(),
 duration: segment_duration_t(),
 size: non_neg_integer(),
 payload: binary() | nil
}

Structure of partial segment.
Attributes representing a partial segment:
	independent? - decides if a segment can be played on its own e.g. starts with a keyframe or is an audio sample
	duration - the duration of the partial segment
	attributes - the attributes for the particular partial segment

 segment_duration_t()

 @type segment_duration_t() :: Membrane.Time.t() | Ratio.t()

 t()

 @type t() :: %Membrane.HTTPAdaptiveStream.Manifest.Segment{
 attributes: [Membrane.HTTPAdaptiveStream.Manifest.SegmentAttribute.t()],
 duration: segment_duration_t(),
 name: String.t(),
 parts: [partial_segment_t()],
 size: non_neg_integer(),
 type: type_t()
}

 type_t()

 @type type_t() :: :full | :partial

Determines if segment is full and independent or partial
and consists of several partial segments.

 Membrane.HTTPAdaptiveStream.Manifest.SegmentAttribute - Membrane HTTP Adaptive Stream plugin v0.20.2

Membrane.HTTPAdaptiveStream.Manifest.SegmentAttribute behaviour

Definition of Segment Attributes and behaviour for serializing them.
This module should also contain macros for generating different types of attributes

 Summary

 Types

 segment_type_t()

 t()

 Callbacks

 serialize(t)

 Callback for serializing a segment attribute to a string. It is required for each implementation of this behavior.

 Functions

 discontinuity(header, discontinuity_index)

 Creates a definition of a discontinuity segment attribute.

 Types

 segment_type_t()

 @type segment_type_t() :: :discontinuity | :creation_time | atom()

 t()

 @type t() :: {type :: segment_type_t(), arguments :: any()}

 Callbacks

 serialize(t)

 @callback serialize(t()) :: [String.t()]

Callback for serializing a segment attribute to a string. It is required for each implementation of this behavior.

 Functions

 discontinuity(header, discontinuity_index)

 (macro)

Creates a definition of a discontinuity segment attribute.

 Membrane.HTTPAdaptiveStream.Manifest.Track - Membrane HTTP Adaptive Stream plugin v0.20.2

Membrane.HTTPAdaptiveStream.Manifest.Track

Struct representing a state of a single manifest track and functions to operate
on it.

 Summary

 Types

 id_t()

 segment_duration_t()

 segment_metadata()

 segment_payload_t()

 segment_size_t()

 segments_t()

 t()

 The struct representing a track.

 Functions

 add_chunk(track, opts, attributes \\ [])

 Recognizes if its regular or partial segment and then update the track appropriately.
Returns Changeset.

 all_segments(track)

 Returns all segments present in the track, including stale segments.

 default_header_naming_fun(track, counter)

 default_partial_naming_fun(track, list)

 default_segment_naming_fun(track)

 discontinue(track)

 Discontinue the track, indicating that parameters of the stream have changed.

 finish(track)

 Marks the track as finished and finalize last segment if needed. After this action, it won't be possible to add any new segments to the track.

 from_beginning(track)

 Return new track with all stale segments restored, resulting in playback of historic data.
Only works with 'persist?' option enabled.

 header(track)

 Returns current header name

 new(config)

 persisted?(map)

 supports_partial_segments?(track)

 Tells whether the track is able to produce partial media segments.

 Types

 id_t()

 @type id_t() :: any()

 segment_duration_t()

 @type segment_duration_t() :: Membrane.Time.t() | Ratio.t()

 segment_metadata()

 @type segment_metadata() :: %{
 payload: segment_payload_t(),
 complete?: boolean(),
 independent?: boolean(),
 last_chunk?: boolean(),
 duration: segment_duration_t(),
 size: segment_size_t()
}

 segment_payload_t()

 @type segment_payload_t() :: binary()

 segment_size_t()

 @type segment_size_t() :: non_neg_integer()

 segments_t()

 @type segments_t() :: Qex.t(Membrane.HTTPAdaptiveStream.Manifest.Segment.t())

 t()

 @type t() :: %Membrane.HTTPAdaptiveStream.Manifest.Track{
 awaiting_discontinuity: term(),
 content_type: :audio | :video | :muxed,
 current_discontinuity_seq_num: non_neg_integer(),
 current_seq_num: non_neg_integer(),
 discontinuities_counter: non_neg_integer(),
 encoding:
 [Membrane.HTTPAdaptiveStream.Manifest.Track.Config.encoding_t()] | [],
 finished?: boolean(),
 header_extension: String.t(),
 header_name: String.t(),
 header_naming_fun: (t(), counter :: non_neg_integer() -> String.t()),
 id: id_t(),
 max_framerate: term(),
 mode: term(),
 next_segment_id: non_neg_integer(),
 partial_naming_fun: term(),
 partial_segment_duration: segment_duration_t() | nil,
 persist?: boolean(),
 resolution: {non_neg_integer(), non_neg_integer()} | nil,
 segment_duration: Membrane.Time.t(),
 segment_extension: String.t(),
 segment_naming_fun: (t() -> String.t()),
 segment_sequencer: {msn :: non_neg_integer(), part_sn :: non_neg_integer()},
 segments: segments_t(),
 stale_headers: term(),
 stale_segments: segments_t(),
 target_window_duration: Membrane.Time.t() | :infinity,
 track_name: String.t(),
 window_duration: non_neg_integer()
}

The struct representing a track.
Consists of all the fields from Config.t and also:
	header_name - name of the header file
	current_seq_num - the number to identify the next segment
	current_discontinuity_seq_num - number of current discontinuity sequence.
	segments - segments' names and durations
	stale_segments - stale segments' names and durations, kept empty unless persist? is set to true
	stale_headers - stale headers' names, kept empty unless persist? is set to true
	finished? - determines whether the track is finished
	window_duration - current window duration
	discontinuities_counter - the number of discontinuities that happened so far
	next_segment_id - the sequence number of the next segment that will be generated
	segment_sequencer - keeps track of the current sequence number of a segment.

 Functions

 add_chunk(track, opts, attributes \\ [])

 @spec add_chunk(
 t(),
 segment_metadata(),
 [Membrane.HTTPAdaptiveStream.Manifest.SegmentAttribute.t()]
) :: {Membrane.HTTPAdaptiveStream.Manifest.Changeset.t(), t()}

Recognizes if its regular or partial segment and then update the track appropriately.
Returns Changeset.

 all_segments(track)

 @spec all_segments(t()) :: [segment_name :: String.t()]

Returns all segments present in the track, including stale segments.

 default_header_naming_fun(track, counter)

 @spec default_header_naming_fun(t(), non_neg_integer()) :: String.t()

 default_partial_naming_fun(track, list)

 @spec default_partial_naming_fun(t(), Keyword.t()) :: String.t()

 default_segment_naming_fun(track)

 @spec default_segment_naming_fun(t()) :: String.t()

 discontinue(track)

 @spec discontinue(t()) :: {header_name :: String.t(), t()}

Discontinue the track, indicating that parameters of the stream have changed.
New header has to be stored under the returned filename.
For details on discontinuity, please refer to RFC 8216.

 finish(track)

 @spec finish(t()) :: {Membrane.HTTPAdaptiveStream.Manifest.Changeset.t(), t()}

Marks the track as finished and finalize last segment if needed. After this action, it won't be possible to add any new segments to the track.

 from_beginning(track)

 @spec from_beginning(t()) :: t()

Return new track with all stale segments restored, resulting in playback of historic data.
Only works with 'persist?' option enabled.

 header(track)

 @spec header(t()) :: String.t()

Returns current header name

 new(config)

 @spec new(Membrane.HTTPAdaptiveStream.Manifest.Track.Config.t()) :: t()

 persisted?(map)

 @spec persisted?(t()) :: boolean()

 supports_partial_segments?(track)

 @spec supports_partial_segments?(t()) :: boolean()

Tells whether the track is able to produce partial media segments.

 Membrane.HTTPAdaptiveStream.Manifest.Track.Config - Membrane HTTP Adaptive Stream plugin v0.20.2

Membrane.HTTPAdaptiveStream.Manifest.Track.Config

Track configuration.

 Summary

 Types

 encoding_t()

 Track configuration consists of the following fields

 t()

 Types

 encoding_t()

 @type encoding_t() :: {:audio, String.t()} | {:video, String.t()}

Track configuration consists of the following fields:
	id - identifies the track, will be serialized and attached to names of manifests, headers and segments
	track_name - the name of the track, determines how manifest files will be named
	content_type - either audio or video
	header_extension - extension of the header file (for example .mp4 for CMAF)
	segment_extension - extension of the segment files (for example .m4s for CMAF)
	segment_duration - expected duration of segments.
	partial_segment_duration - expected duration of each partial segment, nil if not partial segments are expected
	header_naming_fun - a function that generates consequent header names for a given track
	segment_naming_fun - a function that generates consequent segment names for a given track
	target_window_duration - track manifest duration is kept above that time, while the oldest segments are removed whenever possible

	persist? - determines whether the entire track contents should be available after the streaming finishes
	mode - track's mode that dictates type of metadata inserted into playlist's manifest
	encoding - keyword of strings representing encoding of content_type
	resolution - resolution of video stream
	max_framerate - maximal framerate of video stream

 t()

 @type t() :: %Membrane.HTTPAdaptiveStream.Manifest.Track.Config{
 content_type: :audio | :video,
 encoding: [encoding_t()] | [],
 header_extension: String.t(),
 header_naming_fun: (Membrane.HTTPAdaptiveStream.Manifest.Track.t(),
 counter :: non_neg_integer() ->
 String.t()),
 id: Membrane.HTTPAdaptiveStream.Manifest.Track.id_t(),
 max_framerate: float() | nil,
 mode: :vod | :live,
 partial_naming_fun: (t(), Keyword.t() -> String.t()),
 partial_segment_duration: Membrane.Time.t() | nil,
 persist?: boolean(),
 resolution: {non_neg_integer(), non_neg_integer()} | nil,
 segment_duration: Membrane.Time.t(),
 segment_extension: String.t(),
 segment_naming_fun: (Membrane.HTTPAdaptiveStream.Manifest.Track.t() ->
 String.t()),
 target_window_duration: Membrane.Time.t() | :infinity,
 track_name: String.t()
}

 Membrane.HTTPAdaptiveStream.Storage - Membrane HTTP Adaptive Stream plugin v0.20.2

Membrane.HTTPAdaptiveStream.Storage behaviour

Behaviour for storing manifests and stream segments.

 Summary

 Types

 callback_result_t()

 config_t()

 header()

 metadata_t()

 parent_t()

 The identifier of a parent that the resource belongs to (the track identifier).

 partial_segment_metadata()

 segment_metadata_t()

 segments()

 state_t()

 t()

 Callbacks

 init(config_t)

 Generates the storage state based on the configuration struct.

 remove(parent_id, resource_name, context, state_t)

 Removes the resource.

 store(parent_id, resource_name, content, metadata, context, state_t)

 Stores the resource on a storage.

 Functions

 apply_track_changeset(storage, track_id, changeset)

 Stores a new segment and removes stale ones.

 clean_all_tracks(storage, segments_per_track, header_per_track)

 Removes all segments grouped by track.

 cleanup(storage, id, segments, header)

 Removes all the saved segments and manifest for given id.

 clear_cache(storage)

 Clears the manifest cache.

 new(storage_config, opts \\ [])

 Initializes the storage.

 store_header(storage, track_id, name, payload)

 Stores stream header file.

 store_manifests(storage, map)

 Stores serialized manifest files

 Types

 callback_result_t()

 @type callback_result_t() :: :ok | {:error, reason :: any()}

 config_t()

 @type config_t() :: struct()

 header()

 @type header() :: String.t()

 metadata_t()

 @type metadata_t() :: segment_metadata_t() | partial_segment_metadata() | %{}

 parent_t()

 @type parent_t() :: any()

The identifier of a parent that the resource belongs to (the track identifier).
It can either be a master or secondary playlist (a track playlist).
In case of master playlist the identifier will be :master while for tracks it can be an arbitrary value.

 partial_segment_metadata()

 @type partial_segment_metadata() :: %{
 duration: Membrane.Time.t(),
 independent: boolean(),
 byte_offset: non_neg_integer()
}

 segment_metadata_t()

 @type segment_metadata_t() :: %{duration: Membrane.Time.t()}

 segments()

 @type segments() :: [String.t()]

 state_t()

 @type state_t() :: any()

 t()

 @opaque t()

 Callbacks

 init(config_t)

 @callback init(config_t()) :: state_t()

Generates the storage state based on the configuration struct.

 remove(parent_id, resource_name, context, state_t)

 @callback remove(
 parent_id :: parent_t(),
 resource_name :: String.t(),
 context :: %{type: :manifest | :header | :segment},
 state_t()
) :: {callback_result_t(), state :: state_t()}

Removes the resource.
In case of removing a segment the storage should make sure to remove all
previous partial segments with the same name. It is the user's responsibility to remember
and distinguish between the partial segments.

 store(parent_id, resource_name, content, metadata, context, state_t)

 @callback store(
 parent_id :: parent_t(),
 resource_name :: String.t(),
 content :: String.t() | binary(),
 metadata :: metadata_t(),
 context :: %{
 type: :manifest | :header | :segment | :partial_segment,
 mode: :text | :binary
 },
 state_t()
) :: {callback_result_t(), state :: state_t()}

Stores the resource on a storage.
Gets the mode that should be used when writing to a file and type of the resource

 Functions

 apply_track_changeset(storage, track_id, changeset)

 @spec apply_track_changeset(
 t(),
 track_id :: term(),
 Membrane.HTTPAdaptiveStream.Manifest.Changeset.t()
) :: {callback_result_t(), t()}

Stores a new segment and removes stale ones.

 clean_all_tracks(storage, segments_per_track, header_per_track)

 @spec clean_all_tracks(t(), %{required(id :: any()) => segments()}, %{
 required(id :: any()) => header()
}) ::
 {callback_result_t(), t()}

Removes all segments grouped by track.

 cleanup(storage, id, segments, header)

 @spec cleanup(t(), id :: any(), segments :: segments(), header :: header() | nil) ::
 {callback_result_t(), t()}

Removes all the saved segments and manifest for given id.

 clear_cache(storage)

 @spec clear_cache(t()) :: t()

Clears the manifest cache.

 new(storage_config, opts \\ [])

 @spec new(config_t(), [{:enable_cache, boolean()}]) :: t()

Initializes the storage.
Accepts the following options:
	enable_cache - if true (default), manifests will be stored only if they've been changed

 store_header(storage, track_id, name, payload)

 @spec store_header(t(), track_id :: term(), name :: String.t(), payload :: binary()) ::
 {callback_result_t(), t()}

Stores stream header file.

 store_manifests(storage, map)

 @spec store_manifests(
 t(),
 Membrane.HTTPAdaptiveStream.Manifest.serialized_manifests_t()
) ::
 {callback_result_t(), t()}

Stores serialized manifest files

 Membrane.HTTPAdaptiveStream.Storages.FileStorage - Membrane HTTP Adaptive Stream plugin v0.20.2

Membrane.HTTPAdaptiveStream.Storages.FileStorage

Membrane.HTTPAdaptiveStream.Storage implementation that saves the stream to
files locally.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Membrane.HTTPAdaptiveStream.Storages.FileStorage{directory: Path.t()}

 Membrane.HTTPAdaptiveStream.Storages.GenServerStorage - Membrane HTTP Adaptive Stream plugin v0.20.2

Membrane.HTTPAdaptiveStream.Storages.GenServerStorage

Membrane.HTTPAdaptiveStream.Storage implementation that issues a call or cast
with a message_t/0 to given destination on each call to store/remove.

 Summary

 Types

 message_t()

 remove_t()

 store_t()

 t()

 Types

 message_t()

 @type message_t() :: store_t() | remove_t()

 remove_t()

 @type remove_t() ::
 {Membrane.HTTPAdaptiveStream.Storages.GenServerStorage, :remove,
 %{name: String.t(), type: :manifest | :header | :segment}}

 store_t()

 @type store_t() ::
 {Membrane.HTTPAdaptiveStream.Storages.GenServerStorage, :store,
 %{
 name: String.t(),
 contents: String.t(),
 type: :manifest | :header | :segment,
 mode: :text | :binary
 }}

 t()

 @type t() :: %Membrane.HTTPAdaptiveStream.Storages.GenServerStorage{
 destination: Process.dest(),
 method: :call | :cast
}

 Membrane.HTTPAdaptiveStream.Storages.SendStorage - Membrane HTTP Adaptive Stream plugin v0.20.2

Membrane.HTTPAdaptiveStream.Storages.SendStorage

Membrane.HTTPAdaptiveStream.Storage implementation that sends a message_t/0
to given destination on each call to store/remove.

 Summary

 Types

 message_t()

 remove_t()

 store_t()

 t()

 Types

 message_t()

 @type message_t() :: store_t() | remove_t()

 remove_t()

 @type remove_t() ::
 {Membrane.HTTPAdaptiveStream.Storages.SendStorage, :remove,
 %{name: String.t(), type: :manifest | :header | :segment}}

 store_t()

 @type store_t() ::
 {Membrane.HTTPAdaptiveStream.Storages.SendStorage, :store,
 %{
 name: String.t(),
 contents: String.t(),
 type: :manifest | :header | :segment | :partial_segment,
 mode: :text | :binary
 }}

 t()

 @type t() :: %Membrane.HTTPAdaptiveStream.Storages.SendStorage{
 destination: Process.dest()
}

OEBPS/dist/epub-4WIP524F.js
